Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Heliyon ; 10(9): e30255, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707326

RESUMO

This study investigated the physicochemical and flavor quality changes in fresh-cut papaya that was stored at 4 °C. Multivariate statistical analysis was used to evaluate the freshness of fresh-cut papaya. Aerobic plate counts were selected as a predictor of freshness of fresh-cut papaya, and a prediction model for freshness was established using partial least squares regression (PLSR), and support vector machine regression (SVMR) algorithms. Freshness of fresh-cut papaya could be well distinguished based on physicochemical and flavor quality analyses. The aerobic plate counts, as a predictor of freshness of fresh-cut papaya, significantly correlated with storage time. The SVMR model had a higher prediction accuracy than the PLSR model. Combining flavor quality with multivariate statistical analysis can be effectively used for evaluating the freshness of fresh-cut papaya.

2.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38676169

RESUMO

Accurate and reliable pose estimation of boom-type roadheaders is the key to the forming quality of the tunneling face in coal mines, which is of great importance to improve tunneling efficiency and ensure the safety of coal mine production. The multi-laser-beam target-based visual localization method is an effective way to realize accurate and reliable pose estimation of a roadheader body. However, the complex background interference in coal mines brings great challenges to the stable and accurate segmentation and extraction of laser beam features, which has become the main problem faced by the long-distance visual positioning method of underground equipment. In this paper, a semantic segmentation network for underground laser beams in coal mines, RCEAU-Net, is proposed based on U-Net. The network introduces residual connections in the convolution of the encoder and decoder parts, which effectively fuses the underlying feature information and improves the gradient circulation performance of the network. At the same time, by introducing cascade multi-scale convolution in the skipping connection section, which compensates for the lack of contextual semantic information in U-Net and improves the segmentation effect of the network model on tiny laser beams at long distance. Finally, the introduction of an efficient multi-scale attention module with cross-spatial learning in the encoder enhances the feature extraction capability of the network. Furthermore, the laser beam target dataset (LBTD) is constructed based on laser beam target images collected from several coal mines, and the proposed RCEAU-Net model is then tested and verified. The experimental results show that, compared with the original U-Net, RCEAU-Net can ensure the real-time performance of laser beam segmentation while increasing the Accuracy by 0.19%, Precision by 2.53%, Recall by 22.01%, and Intersection and Union Ratio by 8.48%, which can meet the requirements of multi-laser-beam feature segmentation and extraction under complex backgrounds in coal mines, so as to further ensure the accuracy and stability of long-distance visual positioning for boom-type roadheaders and ensure the safe production in the working face.

3.
Virol Sin ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38677713

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. In this study, we detected accessory protein-specific antibodies in COVID-19 patients' sera using various techniques, including Luciferase Immunoprecipitation System (LIPS), Immunofluorescence assay (IFA), and Western blot (WB). Proteins 3a, 3b, 7b, 8 and 9c specific antibodies can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. And antibodies against protein 3a and 7b only detected in ICU patients, which may serve as a marker for predicting the disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for the protein detection assays and their role in pathogenesis.

4.
Cell Rep ; 43(1): 113653, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175758

RESUMO

Omicron, as the emerging variant with enhanced vaccine tolerance, has sharply disrupted most therapeutic antibodies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the subgenus Sarbecovirus, members of which share high sequence similarity. Herein, we report one sarbecovirus antibody, 5817, which has broad-spectrum neutralization capacity against SARS-CoV-2 variants of concern (VOCs) and SARS-CoV, as well as related bat and pangolin viruses. 5817 can hardly compete with six classes of receptor-binding-domain-targeted antibodies grouped by structural classifications. No obvious impairment in the potency is detected against SARS-CoV-2 Omicron and subvariants. The cryoelectron microscopy (cryo-EM) structure of neutralizing antibody 5817 in complex with Omicron spike reveals a highly conserved epitope, only existing at the receptor-binding domain (RBD) open state. Prophylactic and therapeutic administration of 5817 potently protects mice from SARS-CoV-2 Beta, Delta, Omicron, and SARS-CoV infection. This study reveals a highly conserved cryptic epitope targeted by a broad sarbecovirus neutralizing antibody, which would be beneficial to meet the potential threat of pre-emergent SARS-CoV-2 VOCs.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos , Anticorpos Antivirais
5.
Int J Biol Macromol ; 259(Pt 2): 129117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211930

RESUMO

Hydrogen sulfide (H2S), or dihydrogen sulfane (H2Sn), acts as a signal molecule through the beneficial mechanism of persulfidation, known as the post-translational transformation of cysteine residues to persulfides. We previously reported that Glutathione (GSH) could regulate enzyme activity through S-desulfurization or glutathionylation of residues to generate protein-SG or protein-SSG, releasing H2S. However, little is known about the mechanisms by which H2Sn and GSH affect the disulfide bonds. In this study, we provide direct evidences that H2Sn and GSH modify the sulfhydryl group on Cys272, which forms disulfide bonds in acetylcholinesterase (AChE), to generate Cys-SSH and Cys-SSG, respectively. Glutathionylation of disulfide is a two-step reaction based on nucleophilic substitution, in which the first CS bond is broken, then the SS bond is broken to release H2S. H2Sn and GSH controlled self-breathing motion in enzyme catalysis by disconnecting specific disulfide bonds and modifying cysteine residues, thereby regulating AChE activity. Here, we elucidated H2Sn and GSH mechanisms on disulfide in the AChE system and proposed a self-breathing control theory induced by H2Sn and GSH. These theoretical findings shed light on the biological functions of H2Sn and GSH on sulfhydryl and disulfide bonds and enrich the theory of enzyme activity regulation.


Assuntos
Acetilcolinesterase , Sulfeto de Hidrogênio , Cisteína/química , Sulfeto de Hidrogênio/farmacologia , Compostos de Sulfidrila/química , Glutationa/metabolismo , Dissulfetos , Oxirredução
6.
Nat Commun ; 15(1): 842, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287016

RESUMO

The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.


Assuntos
COVID-19 , Feminino , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
7.
Adv Sci (Weinh) ; 11(9): e2303366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105421

RESUMO

To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (ß-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of ß-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-ß-CoV vaccine.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Nanopartículas , Vacinas Virais , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , SARS-CoV-2 , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Modelos Animais
8.
Virology ; 589: 109925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984151

RESUMO

SARS-CoV-2 and its variants continue to threaten public health. Nanobodies that block the attachment of the RBD to host cell angiotensin-converting enzyme 2 (ACE2) represent promising drug candidates. In this study, we reported the identification and structural biological characterization of a nanobody from a RBD-immunized alpaca. The nanobody, termed as 2S-1-19, shows outstanding neutralizing activity against both pseudotyped and authentic SARS-CoV-2 viruses. The crystal structure of 2S-1-19 bound to SARS-CoV-2 RBD reveals an epitope that overlaps with the binding site for ACE2. We also showed that 2S-1-19 reserves promising, though compromised, neutralizing activity against the Delta variant and that the trivalent form of 2S-1-19 remarkably increases its neutralizing capacity. Despite this, neither the monomeric or trimeric 2S-1-19 could neutralize the Omicron BA.1.1 variant, possibility due to the E484A and Q493K mutations found within this virus variant. These data provide insights into immune evasion caused by SARS-CoV-2 variants.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Front Chem ; 11: 1256541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045605

RESUMO

Puncture-resistant clothing plays an important role in martial arts. This article studies the preparation process of multi-layer flexible stab-resistant fabrics, analyzes the sports properties of the fabric, and explores the potential application of stab-resistant clothing in martial arts. This article uses ultra-high molecular weight polyethylene fiber as raw material, preprocesses it, including fiber cleaning, drying, lamination, and laminating them together through needle punching, then soaks the laminated fibers in resin, and the soaked fibers solidifies to form a specific flexible puncture-resistant fabric. This article prepares three types of layered fabrics, namely woven fabrics, nonwoven materials, and composite materials of nonwoven materials + woven fabrics + nonwoven materials, and analyzes the kinematic characteristics of the three layered fabrics. Experimental results show that when the number of layers is 4, the average breaking tensile forces of woven fabrics, nonwoven materials and composite materials are 3400, 4600 and 3860 respectively, and the average breaking elongations are 11.8%, 40.6% and 17.4% respectively. This shows that woven fabrics have the highest levels of air permeability and moisture permeability.

10.
MedComm (2020) ; 4(6): e397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37901798

RESUMO

SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.

12.
Biol Direct ; 18(1): 48, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37592296

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been shown to play diverse biological functions in the progression of multiple diseases. However, the impacts of circRNAs on breast cancer (BC) progression remains unclear. Therefore, the objective of this paper is to investigate the role and mechanisms of a functional circRNA in BC metastasis and immune escape. METHODS: This study used a circRNA microarray and identified a novel circRNA hsa_circ_0067842. The validation and characteristics of hsa_circ_0067842 were investigated using qRT-PCR, sanger sequencing, RNase R treatment, actinomycin D treatment and fluorescence in situ hybridization (FISH). Gain- and loss-of-function assays were performed to evaluate the biological function of hsa_circ_0067842 in BC progression and immune escape. Mechanistically, the interaction between hsa_circ_0067842 and HuR was explored by RNA pull down, mass spectrometry (MS), subcellular component protein extraction and immunofluorescence (IF). The regulatory mechanisms of hsa_circ_0067842/HuR/CMTM6/PD-L1 axis were investigated by qRT-PCR, western blot, FISH, immunoprecipitation and rescue assays. RESULTS: The expression of hsa_circ_0067842 was upregulated in BC tissues and cells, which was found to be significantly associated with poor prognosis, regardless of other clinical covariates. Function assays showed that hsa_circ_0067842 promoted the migration and invasion capacities of BC cells. Moreover, co-culture experiment with peripheral blood mononuclear cells (PBMCs) showed that hsa_circ_0067842 played a role in the immune escape of BC cells. Mechanistically, our study showed that hsa_circ_0067842 interacted with HuR, affecting its nuclear translocation, thus enhancing the stability of CMTM6. CMTM6 not only enhances the migration and invasion ability of BC cells, but also affects the ubiquitination of PD-L1 and inhibits its degradation. CONCLUSION: Collectively, our results demonstrated that hsa_circ_0067842 promoted BC progression through the HuR/CMTM6/PD-L1 axis, providing new insight and a potential target for BC prognosis and therapy.


Assuntos
Neoplasias da Mama , RNA Circular , Evasão Tumoral , Humanos , Antígeno B7-H1/genética , Hibridização in Situ Fluorescente , Leucócitos Mononucleares , RNA Circular/genética , Neoplasias da Mama/patologia , Metástase Neoplásica
13.
Microbiol Spectr ; 11(4): e0110023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395664

RESUMO

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.


Assuntos
Produtos Biológicos , COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 245: 124972, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285891

RESUMO

Numerous secondary metabolites in medicinal food homology plants such as Allium inhibit the activity of acetylcholinesterase (AChE), but the current understanding of the inhibition mechanism is limited. In this study, we employed ultrafiltration, spectroscopic, molecular docking, and matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) techniques to investigate the inhibition mechanism of AChE by garlic organic sulfanes, including diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS). The results of UV-spectrophotometry and ultrafiltration experiments showed the inhibition of AChE activity by DAS and DADS was reversible (competitive inhibition), but inhibition by DATS was irreversible. Molecular fluorescence and molecular docking indicated DAS and DADS changed the positions of key amino acids inside the catalytic cavity through hydrophobic interactions with AChE. By using MALDI-TOF-MS/MS, we found DATS irreversibly inhibited AChE activity by opening disulfide-bond switching of disulfide bond 1 (Cys-69 and Cys-96) and disulfide bond 2 (Cys-257 and Cys-272) in AChE, as well as by covalently modifying Cys-272 in disulfide bond 2 to generate AChE-SSA derivatives (strengthened switch). This study provides a basis for further exploration of natural AChE inhibitors using organic active substances in garlic and presents a hypothesis of U-shaped spring force arm effect based on the disulfide bond-switching reaction of DATS that can be used to evaluate the stability of disulfide bonds in proteins.


Assuntos
Compostos Alílicos , Alho , Plantas Medicinais , Alho/química , Acetilcolinesterase , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Sulfetos/química , Dissulfetos/farmacologia , Antioxidantes/farmacologia , Compostos Alílicos/farmacologia , Compostos Alílicos/química
15.
Sci Data ; 10(1): 416, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369715

RESUMO

The underground coal mine production of the fully mechanized mining face exists many problems, such as poor operating environment, high accident rate and so on. Recently, the intelligent autonomous coal mining is gradually replacing the traditional mining process. The artificial intelligence technology is an active research area and is expect to identify and warn the underground abnormal conditions for intelligent longwall mining. It is inseparable from the construction of datasets, but the downhole dataset is still blank at present. This work develops an image dataset of underground longwall mining face (DsLMF+), which consists of 138004 images with annotation 6 categories of mine personnel, hydraulic support guard plate, large coal, towline, miners' behaviour and mine safety helmet. All the labels of dataset are publicly available in YOLO format and COCO format. The availability and accuracy of the datasets were reviewed by experts in coal mine field. The dataset is open access and aims to support further research and advancement of the intelligent identification and classification of abnormal conditions for underground mining.

16.
Nat Commun ; 14(1): 2179, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069158

RESUMO

A full understanding of the inactivated COVID-19 vaccine-mediated antibody responses to SARS-CoV-2 circulating variants will inform vaccine effectiveness and vaccination development strategies. Here, we offer insights into the inactivated vaccine-induced antibody responses after prime-boost vaccination at both the polyclonal and monoclonal levels. We characterized the VDJ sequence of 118 monoclonal antibodies (mAbs) and found that 20 neutralizing mAbs showed varied potency and breadth against a range of variants including XBB.1.5, BQ.1.1, and BN.1. Bispecific antibodies (bsAbs) based on nonoverlapping mAbs exhibited enhanced neutralizing potency and breadth against the most antibody-evasive strains, such as XBB.1.5, BQ.1.1, and BN.1. The passive transfer of mAbs or their bsAb effectively protected female hACE2 transgenic mice from challenge with an infectious Delta or Omicron BA.2 variant. The neutralization mechanisms of these antibodies were determined by structural characterization. Overall, a broad spectrum of potent and distinct neutralizing antibodies can be induced in individuals immunized with the SARS-CoV-2 inactivated vaccine BBIBP-CorV, suggesting the application potential of inactivated vaccines and these antibodies for preventing infection by SARS-CoV-2 circulating variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Feminino , Animais , Camundongos , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Monoclonais , Anticorpos Neutralizantes , Camundongos Transgênicos , Vacinas de Produtos Inativados , Anticorpos Antivirais
17.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059908

RESUMO

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Assuntos
COVID-19 , Ácidos Nucleicos Livres , Humanos , COVID-19/diagnóstico , Ácidos Nucleicos Livres/genética
18.
Signal Transduct Target Ther ; 8(1): 123, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922500

RESUMO

Persistent asymptomatic (PA) SARS-CoV-2 infections have been identified. The immune responses in these patients are unclear, and the development of effective treatments for these patients is needed. Here, we report a cohort of 23 PA cases carrying viral RNA for up to 191 days. PA cases displayed low levels of inflammatory and interferon response, weak antibody response, diminished circulating follicular helper T cells (cTfh), and inadequate specific CD4+ and CD8+ T-cell responses during infection, which is distinct from symptomatic infections and resembling impaired immune activation. Administration of a single dose of Ad5-nCoV vaccine to 10 of these PA cases elicited rapid and robust antibody responses as well as coordinated B-cell and cTfh responses, resulting in successful viral clearance. Vaccine-induced antibodies were able to neutralize various variants of concern and persisted for over 6 months, indicating long-term protection. Therefore, our study provides an insight into the immune status of PA infections and highlights vaccination as a potential treatment for prolonged SARS-CoV-2 infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Infecções Assintomáticas , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA